
PHYSICAL REVIEW E, VOLUME 64, 011114
Effect of trends on detrended fluctuation analysis
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Detrended fluctuation analysis~DFA! is a scaling analysis method used to estimate long-range power-law
correlation exponents in noisy signals. Many noisy signals in real systems display trends, so that the scaling
results obtained from the DFA method become difficult to analyze. We systematically study the effects of three
types of trends — linear, periodic, and power-law trends, and offer examples where these trends are likely to
occur in real data. We compare the difference between the scaling results for artificially generated correlated
noise and correlated noise with a trend, and study how trends lead to the appearance of crossovers in the
scaling behavior. We find that crossovers result from the competition between the scaling of the noise and the
‘‘apparent’’ scaling of the trend. We study how the characteristics of these crossovers depend on~i! the slope
of the linear trend;~ii ! the amplitude and period of the periodic trend;~iii ! the amplitude and power of the
power-law trend, and~iv! the length as well as the correlation properties of the noise. Surprisingly, we find that
the crossovers in the scaling of noisy signals with trends also follow scaling laws—i.e., long-range power-law
dependence of the position of the crossover on the parameters of the trends. We show that the DFA result of
noise with a trend can be exactly determined by the superposition of the separate results of the DFA on the
noise and on the trend, assuming that the noise and the trend are not correlated. If this superposition rule is not
followed, this is an indication that the noise and the superposed trend are not independent, so that removing the
trend could lead to changes in the correlation properties of the noise. In addition, we show how to use DFA
appropriately to minimize the effects of trends, how to recognize if a crossover indicates indeed a transition
from one type to a different type of underlying correlation, or if the crossover is due to a trend without any
transition in the dynamical properties of the noise.

DOI: 10.1103/PhysRevE.64.011114 PACS number~s!: 05.40.2a
ex
la
ru
ti

sig
e

th
es
a
m

al
e
ew
a
n

h

y
g
t
ick

e
sic
m

ues
s is

ge

the
ce
per

ect
sig-

by
ost
ted
ing

air
nd
nal
in

ling
rom
-

. In
lter
in

sic
non
ith
I. INTRODUCTION

Many physical and biological systems exhibit compl
behavior characterized by long-range power-law corre
tions. Traditional approaches such as the power-spect
and correlation analysis are not suited to accurately quan
long-range correlations in nonstationary signals—e.g.,
nals exhibiting fluctuations along polynomial trends. D
trended fluctuation analysis~DFA! @1–4# is a scaling analy-
sis method providing a simple quantitative parameter—
scaling exponenta—to represent the correlation properti
of a signal. The advantages of DFA over many methods
that it permits the detection of long-range correlations e
bedded in seemingly nonstationary time series, and
avoids the spurious detection of apparent long-range corr
tions that are an artifact of nonstationarity. In the past f
years, more than 100 publications have utilized the DFA
the method of correlation analysis, and have uncovered lo
range power-law correlations in many research fields suc
cardiac dynamics@5–23#, bioinformatics @1,2,24–34,68#,
economics@35–47#, meteorology@48–50#, material science
@51#, ethology@52#, etc. Furthermore, the DFA method ma
help identify different states of the same system accordin
its different scaling behaviors, e.g., the scaling exponena
for heart interbeat intervals is different for healthy and s
individuals @14,16,17,53#.

The correct interpretation of the scaling results obtain
by the DFA method is crucial for understanding the intrin
dynamics of the systems under study. In fact, for all syste
1063-651X/2001/64~1!/011114~19!/$20.00 64 0111
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where the DFA method was applied, there are many iss
that remain unexplained. One of the common challenge
that the correlation exponent is not always a constant~inde-
pendent of scale! and crossovers often exist—i.e., a chan
of the scaling exponenta for different range of scales
@5,16,35#. A crossover usually can arise from a change in
correlation properties of the signal at different time or spa
scales, or can often arise from trends in the data. In this pa
we systematically study how different types of trends aff
the apparent scaling behavior of long-range correlated
nals. The existence of trends in times series generated
physical or biological systems is so common that it is alm
unavoidable. For example, the number of particles emit
by a radiation source in a unit time has a trend of decreas
because the source becomes weaker@54,55#; the density of
air due to gravity has a trend at a different altitude; the
temperature in different geographic locations, rainfall a
the water flow of rivers have a periodic trend due to seaso
changes@49,50,56–59#; the occurrence rate of earthquakes
certain areas has a trend in different time periods@60#. An
immediate problem facing researchers applying a sca
analysis to a time series is whether trends in data arise f
external conditions, having little to do with the intrinsic dy
namics of the system generating noisy fluctuating data
this case, a possible approach is to first recognize and fi
out the trends before we attempt to quantify correlations
the noise. Alternatively, trends may arise from the intrin
dynamics of the system rather than being an epiphenome
of external conditions, and thus they may be correlated w
©2001 The American Physical Society14-1
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the noisy fluctuations generated by the system. In this c
careful consideration should be given if trends should
filtered out when estimating correlations in the noise, sin
such ‘‘intrinsic’’ trends may be related to the local properti
of the noisy fluctuations.

Here we study the origin and the properties of crossov
in the scaling behavior of noisy signals, by applying the DF
method first on correlated noise and then on noise w
trends, and comparing the difference in the scaling resu
To this end, we generate an artificial time series
anticorrelated, white, and correlated noise with standard
viation equal to one—using the modified Fourier filterin
method introduced by Makseet al. @63#. We consider the
case when the trend is independent of the local propertie
the noise~external trend!. We find that the scaling behavio
of noise with a trend is a superposition of the scaling of
noise and the apparent scaling of the trend, and we de
analytical relations based on the DFA, which we call t
‘‘superposition rule.’’ We show how this superposition ru
can be used to determine if the trends are independent o
noisy fluctuation in real data, and if filtering these trends
will not affect the scaling properties of the data.

The outline of this paper is as follows. In Sec. II w
review the algorithm of the DFA method, and in Appendix
we compare the performance of the DFA with the class
scaling analysis—Hurst’s analysis (R/S analysis!—and
show that the DFA is a superior method to quantify the sc
ing behavior of noisy signals. In Sec. III we consider t
effect of a linear trend and we present an analytic deriva
of the apparent scaling behavior of a linear trend in App
dix C. In Sec. IV we study a periodic trend, and in Sec. V
study the effect of a power-law trend. We systematica
study all resulting crossovers, their conditions of existen
and their typical characteristics associated with the differ
types of trends. In addition, we also show how to use D
appropriately to minimize or even eliminate the effects
those trends in cases that trends are not choices of the s
that is, trends do not reflect the dynamics of the system
are caused by some ‘‘irrelevant’’ background. Finally, S
VI contains a summary.

II. DFA

To illustrate the DFA method, we consider a noisy tim
series,u( i ) ( i 51, . . . ,Nmax). We integrate the time serie
u( i ),

y~ j !5(
i 51

j

@u~ i !2^u&#, ~1!

where

^u&5
1

Nmax
(
j 51

Nmax

u~ i !, ~2!

and is divided into boxes of equal sizen. In each box, we fit
the integrated time series by using a polynomial functi
yf it( i ), which is called the local trend. For order-l DFA
~DFA-1 if l 51, DFA-2 if l 52, etc.!, the l -order polynomial
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function should be applied for the fitting. We detrend t
integrated time seriesy( i ) by subtracting the local trend
yf it( i ) in each box, and we calculate the detrended fluct
tion function

Y~ i !5y~ i !2yf it~ i !. ~3!

For a given box sizen, we calculate the root mean squa
~rms! fluctuation

F~n!5A 1

Nmax
(
i 51

Nmax

@Y~ i !#2. ~4!

The above computation is repeated for box sizesn ~different
scales! to provide a relationship betweenF(n) and n. A
power-law relation betweenF(n) and the box sizen indi-
cates the presence of scaling:F(n);na. The parametera,
called the scaling exponent or correlation exponent, rep
sents the correlation properties of the signal: ifa50.5, there
is no correlation and the signal is an uncorrelated sig
~white noise!; if a,0.5, the signal is anticorrelated; ifa
.0.5, there are positive correlations in the signal.

III. NOISE WITH LINEAR TRENDS

First we consider the simplest case: correlated noise w
a linear trend. A linear trend

u~ i !5ALi ~5!

is characterized by only one variable — the slope of
trend AL . For convenience, we denote the rms fluctuat
function for noise without trends byFh(n), linear trends by
FL(n), and noise with a linear trend byFhL(n).

A. DFA-1 on noise with a linear trend

Using the algorithm of Makseet al. @63#, we generate a
correlated noise with a standard deviation one, with a giv
correlation property characterized by a given scaling ex
nenta. We apply DFA-1 to quantify the correlation prope
ties of the noise and find that only in a certain good fit reg
can the rms fluctuation functionFh(n) be approximated by a
power-law function~see Appendix A!

Fh~n!5b0na, ~6!

whereb0 is a parameter independent of the scalen. We find
that the good fit region depends on the correlation expon
a ~see Appendix A!. We also derive analytically the rm
fluctuation function for a linear trend only for DFA-1 an
find that ~see Appendix C!

FL~n!5k0ALnaL, ~7!

where k0 is a constant independent of the length of tre
Nmax, of the box sizen, and of the slope of the trendAL .
We obtainaL52.

Next we apply the DFA-1 method to the superposition
a linear trend with correlated noise and we compare the
fluctuation functionFhL(n) with Fh(n) ~see Fig. 1!. We
4-2
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observe a crossover inFhL(n) at scale n5n3 . For n
,n3 , the behavior ofFhL(n) is very close to the behavio
of Fh(n), while for n.n3 , the behavior ofFhL(n) is very
close to the behavior ofFL(n). A similar crossover behavio
is also observed in the scaling of the well-studied bia
random walk@61,62#. It is known that the crossover in th
biased random walk is due to the competition of the unbia
random walk and the bias~see Fig. 5.3 of@62#!. We illustrate
this observation in Fig. 2, where the detrended fluctuat
functions@Eq. ~3!# of the correlated noise,Yh( i ), and of the
noise with a linear trend,YhL( i ), are shown. For the box siz
n,n3 as shown in Figs. 2~a! and 2~b!, YhL( i )'Yh( i ). For
n.n3 as shown in Figs. 2~c! and 2~d!, YhL( i ) has a distin-
guishable quadratic background significantly different fro
Yh( i ). This quadratic background is due to the integration
the linear trend within the DFA procedure and represents
detrended fluctuation functionYL of the linear trend. These
relations between the detrended fluctuation functionsY( i ) at
different time scalesn explain the crossover in the scalin
behavior ofFhL(n): from very close toFh(n) to very close
to FL(n) ~observed in Fig. 1!.

The experimental results presented in Figs. 1 and 2 s
gest that the rms fluctuation function for a signal which is
superposition of a correlated noise and a linear trend ca
expressed as

@FhL~n!#25@FL~n!#21@Fh~n!#2. ~8!

We provide an analytic derivation of this relation in Appe
dix B, where we show that Eq.~8! holds for the superposi
tion of any two independent signals—in this particular ca

AL=2
–16

AL=2
–12

AL=2
–8

Correlated noise with
linear trend: FηL(n)

nx

DFA–1

10
0

10
1

10
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10
3

10
4

10
5

n

10
–6

10
–4

10
–2

10
0

10
2

10
4

10
6

F
(n

)
Correlated noise : Fη(n)
linear trends: FL(n)

2

2

FIG. 1. Crossover behavior of the root-mean-square fluctua
functionFhL(n) for noise~of lengthNmax5217 and correlation ex-
ponent a50.1) with superposed linear trends of slopeAL

52216,2212,228. For comparison, we showFh(n) for the noise
~thick solid line! andFL(n) for the linear trends~dot-dashed line!
@Eq. ~7!#. The results show a crossover at a scalen3 for FhL(n).
For n,n3 , the noise dominates andFhL(n)'Fh(n). For n
.n3 , the linear trend dominates andFhL(n)'FL(n). Note that
the crossover scalen3 increases when the slopeAL of the trend
decreases.
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noise and a linear trend. We call this relation the ‘‘superp
sition rule.’’ This rule helps us understand how the comp
tition between the contribution of the noise and the trend
the rms fluctuation functionFhL(n) at different scalesn
leads to appearance of crossovers@61#.

Next, we ask how the crossover scalen3 depends on~i!
the slope of the linear trendAL , ~ii ! the scaling exponenta
of the noise, and~iii ! the length of the signalNmax. Surpris-
ingly, we find that for noise with any given correlation e
ponenta the crossover scalen3 itself follows a power-law
scaling relation over several decades:n3;(AL)u ~see Fig.
3!. We find that in this scaling relation, the crossover exp
nent u is negative and its value depends on the correlat
exponenta of the noise—the magnitude ofu decreases
whena increases. We present the values of the ‘‘crosso
exponent’’u for different correlation exponentsa in Table I.

To understand how the crossover scale depends on
correlation exponenta of the noise we employ the superpo
sition rule@Eq. ~8!# and estimaten3 as the intercept betwee
Fh(n) and FL(n). From Eqs.~6! and ~7!, we obtain the
following dependence ofn3 on a:

n35S AL

k0

b0
D 1/(a2aL)

5S AL

k0

b0
D 1/(a22)

. ~9!

This analytical calculation for the crossover expone
21/(aL2a) is in a good agreement with the observed v
ues of u obtained from our simulations~see Fig. 3 and
Table I!.

n

0 150 300
–6

0

6

Y
ηL

Correlated noise + linear trend

(b) n < nx

0 500 1000
i

–20

0

20

Y
ηL

(d) n > nx

0 150 300
–6

0

6

Y
η

Correlated noise

(a) n < nx

0 500 1000
i

–20

0

20

Y
η

(c) n > nx

FIG. 2. Comparison of the detrended fluctuation function
noise Yh( i ) and for noise with linear trendYhL( i ) at different
scales.~a! and~c! areYh for noise witha50.1; ~b! and~d! areYhL

for the same noise with a linear trend with slopeAL52212 ~the
crossover scalen35320, see Fig. 1!. ~a! and ~b! For scalesn
,n3 the effect of the trend is not pronounced andYh'YhL ~i.e.,
Yh @YL). ~c! and ~d! For scalesn.n3 , the linear trend is domi-
nant andYh!YhL .
4-3
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Finally, since theFL(n) does not depend onNmax as we
show in Eq.~7! and in Appendix C, we find thatn3 does not
depend onNmax. This is a special case for linear trends a
does not always hold for higher-order polynomial trends~see
Appendix D!.

B. DFA-2 on noise with a linear trend

Application of the DFA-2 method to noisy signals witho
any polynomial trends leads to scaling results identical to
scaling obtained from the DFA-1 method, with the except
of some vertical shift to lower values for the rms fluctuati
function Fh(n) ~see Appendix A!. However, for signals
which are a superposition of correlated noise and a lin
trend, in contrast to the DFA-1 results presented in Fig
FhL(n) obtained from DFA exhibits no crossovers, and
exactly equal to the rms fluctuation functionFh(n) obtained

10
–6

10
–5

10
–4

10
–3

10
–2

10
–1

AL

10
1

10
2

10
3

n x

α=0.1
α=0.3
α=0.5
α=0.7
α=0.9

θ

DFA–1

FIG. 3. The crossovern3 of Fh L(n) for noise with a linear
trend. We determine the crossover scalen3 based on the difference
D between logFh ~noise! and logFhL ~noise with a linear trend!. The
scale for whichD50.05 is the estimated crossover scalen3 . For
any given correlation exponenta of the noise, the crossover sca
n3 exhibits a long-range power-law behaviorn3;(AL)u, where the
crossover exponentu is a function ofa @see Eq.~9! and Table I#.

TABLE I. The crossover exponentu from the power-law rela-
tion between the crossover scalen3 and the slope of the linear tren
AL , n3;(AL)u, for different values of the correlation exponentsa
of the noise~Fig. 3!. The values ofu obtained from our simulations
are in good agreement with the analytical prediction21/(22a)
@Eq. ~9!#. Note that21/(22a) are not always exactly equal tou
becauseFh (n) in simulations is not a perfect simple power-la
function and the way we determine numericallyn3 is just approxi-
mated.

a u 21/(22a)

0.1 -0.54 -0.53
0.3 -0.58 -0.59
0.5 -0.65 -0.67
0.7 -0.74 -0.77
0.9 -0.89 -0.91
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from DFA-2 for correlated noise without trend~see Fig. 4!.
These results indicate that a linear trend has no effect on
scaling obtained from DFA-2. The reason for this is that
design the DFA-2 method filters out linear trends, i.
YL( i )50 @Eq. ~3!# and thusFhL(n)5Fh(n) due to the su-
perposition rule@Eq. ~8!#. For the same reason, polynomi
trends of order lower thanl superposed on correlated nois
will have no effect on the scaling properties of the no
when DFA-l is applied. Therefore, our results confirm th
the DFA method is a reliable tool to accurately quant
correlations in noisy signals embedded in polynomial tren
Moreover, the reported scaling and crossover features
F(n) can be used to determine the order of polynom
trends present in the data.

IV. NOISE WITH SINUSOIDAL TREND

In this section we study the effect of sinusoidal trends
the scaling properties of noisy signals. For a signal which
a superposition of correlated noise and sinusoidal trend,
find that based on the superposition rule~Appendix B! the
DFA rms fluctuation function can be expressed as

@FhS~n!#25@Fh~n!#21@FS~n!#2, ~10!

whereFhS(n) is the rms fluctuation function of noise with
sinusoidal trend, andFS(n) is for the sinusoidal trend. Firs
we consider the application of DFA-1 to a sinusoidal tren
Next we study the scaling behavior and the features of cro
overs inFhS(n) for the superposition of a correlated nois
and a sinusoidal trend employing the superposition rule@Eq.
~10!#. At the end of this section we discuss the results o
tained from higher-order DFA.

10
0

10
1

10
2

10
3

10
4

n
10

–1

10
0

10
1

10
2

10
3

F
(n

)

α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9
Noise

Noise with linear trend (AL=2
–12

):

DFA–2

α

optimal fitting range

FIG. 4. Comparison of the rms fluctuation functionFh(n) for
noise with different types of correlations~lines! andFhL(n) for the
same noise with a linear trend of slopeAL52212 ~symbols! for
DFA-2. FhL(n)5Fh(n) because the integrated linear trend can
perfectly filtered out in DFA-2, thusYL( i )50 from Eq. ~3!. We
note that to estimate accurately the correlation exponents, one
to choose an optimal range of scalesn, whereF(n) is fitted. For
details see Appendix A.
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A. DFA-1 on sinusoidal trend

Given a sinusoidal trend u( i )5ASsin(2pi/T) ( i
51, . . . ,Nmax), whereAS is the amplitude of the signal andT
is the period, we find that the rms fluctuation functionFS(n)
does not depend on the length of the signalNmax, and has
the same shape for different amplitudes and different per
@Fig. 5#. We find a crossover at scale corresponding to
period of the sinusoidal trend

n23'T, ~11!

and it does not depend on the amplitudeAS. We call this
crossovern23 for convenience, as we will see later. Forn
,n23 , the rms fluctuationFS(n) exhibits an apparent sca
ing with the same exponent asFL(n) for the linear trend@see
Eq. ~7!#,

FS~n!5k1

AS

T
naS, ~12!

wherek1 is a constant independent of the lengthNmax, of the
periodT, of the amplitudeAS of the sinusoidal signal, and o
the box sizen. As for the linear trend@Eq. ~7!#, we obtain
aS52 because at small scales~box sizen) the sinusoidal
function is dominated by a linear term. Forn.n23 , due to
the periodic property of the sinusoidal trend,FS(n) is a con-
stant independent of the scalen,

FS~n!5
1

2A2p
AST. ~13!

The periodT and the amplitudeAS also affects the vertica
shift of FS(n) in both regions. We note that in Eqs.~12! and
~13!, FS(n) is proportional to the amplitudeAS, a behavior
which is also observed for the linear trend@Eq. ~7!#.

10
0

10
1

10
2

10
3

10
4

10
5

n
10

–2

10
0

10
2

10
4

10
6

F
S(

n)
AS=64, T=2

11

AS=64, T=2
12

AS=32, T=2
11

AS=32, T=2
12

2

n2x

DFA–1

FIG. 5. Root-mean-square fluctuation functionFS(n) for sinu-
soidal functions of lengthNmax5217 with different amplitudeAS

and periodT. All curves exhibit a crossover atn23'T/2, with a
slopeaS52 for n,n23 and a flat region forn.n23 . There are
some spurious singularities atn5 j (T/2) ( j is a positive integer!
shown by the spikes.
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B. DFA-1 on noise with sinusoidal trend

In this section we study how the sinusoidal trend affe
the scaling behavior of noise with different types of corre
tions. We apply the DFA-1 method to a signal which is
superposition of correlated noise with a sinusoidal trend.
observe that there are typically three crossovers in the
fluctuationFh S(n) at characteristic scales denoted byn13 ,
n23 , andn33 ~Fig. 6!. These three crossovers divideFhS(n)
into four regions, as shown in Fig. 6~a! @the third crossover
cannot be seen in Fig. 6~b! because its scalen33 is greater
than the length of the signal#. We find that the first and third

FIG. 6. Crossover behavior of the root-mean-square fluctua
function FhS(n) ~circles! for correlated noise~of length Nmax

5217) with a superposed sinusoidal function characterized by
riod T5128 and amplitudeAS52. The rms fluctuation function
Fh(n) for noise~thick line! andFS(n) for the sinusoidal trend~thin
line! are shown for comparison.~a! FhS(n) for correlated noise
with a50.9.~b! FhS(n) for anticorrelated noise witha50.9. There
are three crossovers inFhS(n), at scalesn13 , n23 , andn33 @the
third crossover cannot be seen in~b! because it occurs at scal
larger than the length of the signal#. For n,n13 and n.n33 the
noise dominates andFhS(n)'Fh(n) while for n13,n,n33 the
sinusoidal trend dominates andFhS(n)'FS(n). The crossovers a
n13 and n33 are due to the competition between the correla
noise and the sinusoidal trend~see Fig. 7!, while the crossover at
n23 relates only to the periodT of the sinusoidal@Eq. ~11!#.
4-5
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crossovers at scalesn13 andn33 , respectively~see Fig. 6!,
result from the competition between the effects onFhS(n) of
the sinusoidal signal and the correlated noise. Forn,n13

~region I! andn.n33 ~region IV!, we find that the noise ha
the dominating effect@Fh(n).FS(n)#, so the behavior of
FhS(n) is very close to the behavior ofFh(n) @Eq. ~10!#. For
n13,n,n23 ~region II! andn23,n,n33 ~region III! the
sinusoidal trend dominates@FS(n).Fh(n)#, thus the behav-
ior of Fh S(n) is close toFS(n) ~see Figs. 6 and 7!.

To better understand why there are different regions in
behavior ofFhS(n), we consider the detrended fluctuatio
function @Eq. ~3! and Appendix B# of the correlated noise
Yh( i ), and of the noise with sinusoidal trendYhS . In Fig. 7
we compareYh( i ) and YhS( i ) for anticorrelated and corre
lated noise in the four different regions. For very small sca
n,n13 , the effect of the sinusoidal trend is not pronounc
Yh S( i )'Yh( i ), indicating that in this scale region the sign
can be considered as noise fluctuating around a cons
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FIG. 7. Comparison of the detrended fluctuation function
noiseYh( i ) and noise with sinusoidal trendYhS( i ) in four regions
as shown in Fig. 6. The same signals as in Fig. 6 are used. P
~a!–~f! correspond to Fig. 6~b! for anticorrelated noise with expo
nent a50.1, and panels~g! and ~h! correspond to Fig. 6~a! for
correlated noise with exponenta50.9. ~a! and ~b! For all scales
n,n13 , the effect of the trend is not pronounced andYhS( i )
'Yh( i ) leading to FhS(n)'Fh (n) @Fig. 6~a!#. ~c! and ~d! For
n23.n.n13 the trend is dominant,YhS( i )@Yh( i ) and FhS(n)
'FS(n). Sincen23'T/2 @Eq. ~11!#, the scalen,T/2 and the sinu-
soidal behavior can be approximated as a linear trend. This exp
the quadratic background inYhS( i ) ~d! @see Figs. 2~c! and 2~d!#. ~e!
and ~f! For n23,n,n33 ~i.e., n@T/2), the sinusoidal trend agai
dominates—YhS( i ) is periodic function with periodT. ~g! and ~h!
For n.n33 , the effect of the noise is dominant and the scaling
FhS follows the scaling ofFh @Fig. 6~a!#.
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trend which is filtered out by the DFA-1 procedure@Figs.
7~a! and 7~b!#. Note that the behavior ofYhS @Fig. 7~b!# is
identical to the behavior ofYhL @Fig. 2~b!#, since both a
sinusoidal with a large periodT and a linear trend with smal
slopeAL can be well approximated by a constant trend
n,n13 . For small scalesn13,n,n23 ~region II!, we find
that there is a dominant quadratic background forYhS( i )
@Fig. 7~d!#. This quadratic background is due to the integ
tion procedure in DFA-1, and is represented by the detren
fluctuation function of the sinusoidal trendYS( i ). It is similar
to the quadratic background observed for linear trendYhL( i )
@Fig. 2~d!#—i.e., for n13,n,n23 the sinusoidal trend be
haves as a linear trend andYS( i )'YL( i ). Thus in region II
the ‘‘linear trend’’ effect of the sinusoidal is dominant,YS

.Yh , which leads toFhS(n)'FS(n). This explains also
why FhS(n) for n,n23 ~Fig. 6! exhibits crossover behavio
similar to the one ofFhL(n) observed for noise with a linea
trend. Forn23,n,n33 ~region III! the sinusoidal behavio
is strongly pronounced@Fig. 7~f!#, YS( i )@Yh ( i ), and
YhS( i )'YS( i ) changes periodically with period equal to th
period of the sinusoidal trendT. SinceYhS( i ) is bounded
between a minimum and a maximum value,FhS(n) cannot
increase and exhibits a flat region~Fig. 6!. At very large
scales,n.n33 , the noise effect is again dominant@YS( i )
remains bounded, whileYh grows when increasing the scale#
which leads toFhS(n)'Fh(n) and a scaling behavior tha
corresponds to the scaling of the correlated noise.

First we considern13 . Surprisingly, we find that for
noise with any given correlation exponenta the crossover
scalen13 exhibits long-range power-law dependence of t
periodT, n13;TuT1, and the amplitudeAS, n13;(AS)

uA1 of
the sinusoidal trend@see Figs. 8~a! and 8~b!#. We find that
the ‘‘crossover exponents’’uT1 anduA1 have the same mag
nitude but different sign—uT1 is positive whileuA1 is nega-
tive. We also find that the magnitudes ofuT1 and uA1 in-
crease for larger values of the correlation exponentsa of the
noise. We present the values ofuT1 anduA1 for the different
correlation exponentsa in Table II. To understand the
power-law relations betweenn13 and T, betweenn13 and
AS, and also how the crossover scalen13 depends on the
correlation exponenta, we employ the superposition rul
@Eq. ~10!# and estimaten13 analytically as the first intercep
of Fh(n) andFS(n). From Eqs.~12! and ~6!, we obtain the
following dependence ofn13 on T, AS anda:

n135S b0

k1

T

AS
D 1/(22a)

~14!

From this analytical calculation we obtain the following r
lation between the two crossover exponentsuT1 anduA1 and
the correlation exponenta: uT152uA151/(22a), which is
in a good agreement with the observed values ofuT1 , uA1
obtained from simulations@see Figs. 8~a! and 8~b! and Table
II #.

Next we considern23 . Our analysis of the rms fluctua
tion function FS(n) for the sinusoidal signal in Fig. 5 sug
gests that the crossover scaleFS(n) does not depend on the
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FIG. 8. Dependence of the three crossovers inFhS(n) for noise with a sinusoidal trend~Fig. 6! on the periodT and amplitudeAS of the
sinusoidal trend.~a! Power-law relation between the first crossover scalen13 and the periodT for fixed amplitudeAS and varying correlation
exponenta: n13;TuT1, whereuT1 is a positive crossover exponent@see Table II and Eq.~14!#. ~b! Power-law relation between the firs
crossovern13 and the amplitude of the sinusoidal trendAS for fixed periodT and varying correlation exponenta: n13;AS

uA1 whereuA1 is
a negative crossover exponent@Table II and Eq.~14!#. ~c! The second crossover scalen23 depends only on the periodT: n23;TuT2, where
uT2'1. ~d! Power-law relation between the third crossovern33 andT for fixed amplitudeAS and varyinga trend:n33;TuT3. ~e! Power-law
relation between the third crossovern33 andAS for fixed T and varyinga: n33;(AS)

uA3. We find thatuA35uT3 @Table III and Eq.~15!#.
c-
-

be-
amplitudeAS of the sinusoidal. The behavior of the rms flu
tuation functionFhS(n) for noise with a superposed sinu
soidal trend in Figs. 6~a! and 6~b! indicates thatn23 does not
depend on the correlation exponenta of the noise, since for
both correlated (a50.9) and anticorrelated (a50) noise (T
01111
and AS are fixed!, the crossover scalen23 remains un-
changed. We find thatn23 dependsonly on the periodT of
the sinusoidal trend and exhibits a long-range power-law
havior n23;TuT2 with a crossover exponentuT2'1 @Fig.
8~c!# which is in agreement with the prediction of Eq.~11!.
4-7
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For the third crossover scalen33 , as forn13 we find a
power-law dependence on the periodT, n33;TuT3, and on
the amplitudeAS, n33;(AS)

uA3, of the sinusoidal trend@see
Figs. 8~d! and 8~e!#. However, in contrast to then13 case,
we find that the crossover exponentsuTp3 anduA3 are equal
and positive with decreasing values for increasing correla
exponentsa. In Table III we present the values of these tw
exponents for different correlation exponenta. To under-
stand how the scalen33 depends onT, AS, and the correla-
tion exponenta simultaneously, we again employ the supe
position rule @Eq. ~10!# and estimaten33 as the second
interceptn33

th of Fh(n) andFS(n). From Eqs.~13! and ~6!,
we obtain the following dependence:

n335S 1

2A2pb0

ASTD 1/a

. ~15!

From this analytical calculation we obtainuT35uA351/a
which is in good agreement with the values ofuT3 anduA3
observed from simulations~Table III!. Finally, our simula-
tions show that all three crossover scalesn13 , n23 , andn33

do not depend on the length of the signalNmax, sinceFh(n)
andFS(n) do not depend onNmax as shown in Eqs.~6!, ~10!,
~12!, and~13!.

C. Higher-order DFA on pure sinusoidal trend

In Sec. IV B we discussed how sinusoidal trends aff
the scaling behavior of correlated noise when the DFA

TABLE II. The crossover exponentsuT1 anduA1 characterizing
the power-law dependence ofn13 on the periodT and amplitudeAS

obtained from simulations:n13;TuT1 andn13;(AS)
uA1 for differ-

ent values of the correlation exponenta of noise @Figs. 8~a! and
8~b!#. The values ofuT1 and uA1 are in good agreement with th
analytical predictionsuT152uA151/(22a) @Eq. ~14!#.

a uT1 -uA1 1/(22a)

0.1 0.55 0.54 0.53
0.3 0.58 0.59 0.59
0.5 0.66 0.66 0.67
0.7 0.74 0.75 0.77
0.9 0.87 0.90 0.91

TABLE III. The crossover exponentsuT3 anduA3 for the power-
law relations:n33;TuT3 and n33;(AS)

uA3 for different values of
the correlation exponenta of noise@Figs. 8~c! and 8~d!#. The values
of up3 and ua3 obtained from simulations are in good agreeme
with the analytical predictionsuT35uA351/a @Eq. ~15!#.

a uT3 uA3 1/a

0.4 2.29 2.38 2.50
0.5 1.92 1.95 2.00
0.6 1.69 1.71 1.67
0.7 1.39 1.43 1.43
0.8 1.26 1.27 1.25
0.9 1.06 1.10 1.11
01111
n

-

t
1

method is applied. Since DFA-1 removes only const
trends in data, it is natural to ask how the observed sca
results will change when we apply DFA of orderl designed
to remove polynomial trends of order lower thanl . In this
section we first consider the rms fluctuationFS for a sinu-
soidal signal and then we study the scaling and crosso
properties ofFhS for correlated noise with a superpose
sinusoidal signal when higher-order DFA is used.

We find that the rms fluctuation functionFS does not
depend on the length of the signalNmax, and preserves a
similar shape when a different order-l DFA method is used
~Fig. 9!. In particular,FS exhibits a crossover at a scalen23

proportional to the periodT of the sinusoidal:n23;TuT2

with uT2'1. The crossover scale shifts to larger values
higher orderl ~Figs. 5 and 9!. For the scalen,n23 FS
exhibits an apparent scaling:FS;naS with an effective ex-
ponent aS5 l 11. For DFA-1, we havel 51 and recover
aS52 as shown in Eq.~12!. For n.n23 , FS(n) is a con-
stant independent of the scalen and of the orderl of the DFA
method in agreement with Eq.~13!.

Next, we considerFhS(n) when DFA-l with a higher or-
der l is used. We find that for all ordersl , FhS(n) does not
depend on the length of the signalNmax and exhibits three
crossovers at small, intermediate, and large scales; sim
behavior is reported for DFA-1 in Fig. 6. Since both th
crossover at small scalesn13 and the crossover at large sca
n33 result from the ‘‘competition’’ between the scaling o
the correlated noise and the effect of the sinusoidal tr
~Figs. 6 and 7!, by using the superposition rule@Eq. ~10!# we
can estimaten13 and n33 as the intercepts ofFh (n) and
FS(n) for the general case of DFA-l .

For n13 we find the following dependence on the perio
T, amplitudeAS, the correlation exponenta of the noise,
and the orderl of the DFA-l method:

n13;~T/AS!1/(l 112a). ~16!

For DFA-1, we havel 51 and we recover Eq.~14!. In addi-

t
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FIG. 9. Comparison of the results of different order DFA on
sinusoidal trend. The sinusoidal trend is given by the funct
64sin(2pi/211) and the length of the signal isNmax5217. The spu-
rious singularities~spikes! arise from the discrete data we use f
the sinusoidal function.
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FIG. 10. Crossover behavior of the rms fluctuation functionFhP(n) ~circles! for correlated noise~of lengthNmax5217) with a super-
posed power-law trendu( i )5APi

l. The rms fluctuation functionFh(n) for noise~solid line! and the rms fluctuation functionFP(n) ~dashed
line! are also shown for comparison. The DFA-1 method is used.~a! FhP(n) for noise with correlation exponental50.9 and the power-law
trend with amplitudeAP51000/(Nmax)

0.4 and positive powerl50.4. ~b! FhP(n) for Brownian noise~integrated white noise,al51.5) and
the power-law trend with amplitudeAP50.01/(Nmax)

20.7 and negative powerl520.7. Note that although in both cases there is a ‘‘simila
crossover behavior forFhP(n), the results in~a! and ~b! represent completely opposite situations: while in~a! the power-law trend with
positive powerl dominates the scaling ofFhP(n) at large scales, in~b! the power-law trend with negative powerl dominates the scaling
at small scales. The arrow in~b! indicates a weak crossover inFP(n) ~dashed lines! at small scales for negative powerl.
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tion, n13 is shifted to larger scales when higher-order DF
l is applied, due to the fact that the value ofFS(n) decreases
when l increases (aS5 l 11, see Fig. 9!.

For the third crossover observed inFhS(n) at large scale
n33 we find for all ordersl of the DFA-l the following
scaling relation:

n33;~TAS!1/a. ~17!

Since the scaling functionFh(n) for correlated noise shifts
vertically to lower values when higher-order DFA-l is used
~see the discussion in Appendix A and Sec. V B!, n33 ex-
hibits a slight shift to larger scales.

For the crossovern23 in FhS(n) at Fh S(n) at intermedi-
ate scales, we findn23;T. This relation is independent o
the orderl of the DFA and is identical to the relation foun
for FS(n) @Eq. ~11!#. n23 also exhibits a shift to larger scale
when higher-order DFA is used~see Fig. 9!.

The features reported here of the crossovers inFhS(n)
can be used to identify low-frequency sinusoidal trends
noisy data and to recognize their effects on the scaling p
erties of the data. This information may be useful wh
quantifying correlation properties in data by means of a s
ing analysis.

V. NOISE WITH POWER-LAW TRENDS

In this section we study the effect of power-law trends
the scaling properties of noisy signals. We consider the c
of correlated noise with a superposed power-law trendu( i )
5APi

l, whenAP is a positive constant,i 51, . . . ,Nmax, and
Nmax is the length of the signal. We find that when th
DFA-1 method is used, the rms fluctuation functionFhP(n)
exhibits a crossover between two scaling regions~Fig. 10!.
01111
-

n
p-
n
l-

se

This behavior results from the fact that at different scalesn,
either the correlated noise or the power-law trend is do
nant, and can be predicted by employing the superposi
rule

@FhP~n!#25@Fh~n!#21@FP~n!#2, ~18!

whereFh(n) andFP(n) are the rms fluctuation function o
noise and the power-law trend, respectively, andFhP(n) is
the rms fluctuation function for the superposition of the no
and the power-law trend. Since the behavior ofFh(n) is
known @Eq. ~6! and Appendix A#, we can understand th
features ofFhP(n) if we know how FP(n) depends on the
characteristics of the power-law trend. We note that the s
ing behavior ofFhP(n) displayed in Fig. 10~a! is to some
extent similar to the behavior of the rms fluctuation functi
FhL(n) for correlated noise with a linear trend~Fig. 1!—e.g.,
the noise is dominant at small scalesn, while the trend is
dominant at large scales. However, the behaviorFP(n) is
more complex than that ofFL(n) for the linear trend, since
the effective exponental for FP(n) can depend on the
power l of the power-law trend. In particular, for negativ
values ofl, FP(n) can become dominated at small sca
@Fig. 10~b!# while Fh (n) dominates at large scales—a sit
ation completely opposite of noise with a linear trend~Fig. 1!
or with a power-law trend with positive values for the pow
l. Moreover,FP(n) can exhibit crossover behavior at sma
scales@Fig. 10~b!# for negativel which is not observed for
positivel. In addition,FP(n) depends on the orderl of the
DFA method and the lengthNmax of the signal. We discuss
the scaling features of the power-law trends in the followi
three sections, V A–V C.
4-9
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FIG. 11. Scaling behavior of the rms fluctuation functionFP(n) for power-law trends,u( i ); i l, wherei 51, . . . ,Nmax andNmax5217 is
the length of the signal.~a! For l,0, FP(n) exhibits crossover at small scales which is more pronounced with increasing the ordel of
DFA-l and decreasing the value ofl. Such crossover is not observed forl.0 whenFP(n);nal for all scalesn @see Fig. 10~a!#. ~b!
Dependence of the effective exponental on the powerl for different orderl 51,2,3 of the DFA method. Three regions are observ
depending on the orderl of the DFA: region I (l. l 20.5), whereal' l 11; region II (21.5,l, l 20.5), whereal5l11.5; region III
(l,21.5), whereal'0. We note that for integer values of the powerl50,1, . . . ,l 21, wherel is the order of DFA we used, there is n
scaling forFP(n) andal is not defined, as indicated by the arrows.~c! Asymptotic behavior near integer values ofl. FP(n) is plotted for
l→1 when DFA-2 is used. Even forl2151026, we observe at large scalesn a region with an effective exponental'2.5. This region is
shifted to infinitely large scales whenl51.
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A. Dependence ofF P„n… on the power l

First we study how the rms fluctuation functionFP(n) for
a power-law trendu( i )5APi

l depends on the powerl. We
find that

FP~n!;APn
al, ~19!

whereal is the effective exponent for the power-law tren
For positive l we observe no crossovers inFP(n) @Fig.
10~a!#. However, for negativel there is a crossover inFP(n)
at small scalesn @Fig. 10~b!#, and we find that this crossove
becomes even more pronounced with decreasingl or in-
creasing the orderl of the DFA method, and is also shifted t
larger scales@Fig. 11~a!#.

Next, we study how the effective exponental for FP(n)
depends on the value of the powerl for the power-law trend.
01111
.

We examine the scaling ofFP(n) and estimateal for 24
,l,4. In the cases whenFP(n) exhibits a crossover, in
order to obtainal we fit the range of larger scales to th
right of the crossover. We find that for any orderl of the
DFA-l method there are three regions with different relatio
betweenal andl @Fig. 11~b!#. They are as follows:

~i! al' l 11 for l. l 20.5 ~region I!.
~ii ! al'l11.5 for 21.5<l< l 20.5 ~region II!.
~iii ! al'0 for l,21.5 ~region III!.
Note that for integer values of the powerl (l

50,1, . . . ,m21), i.e., polynomial trends of orderm21, the
DFA-l method of orderl .m21 (l is also an integer! leads
to FP(n)'0, since DFA-l is designed to remove polynomia
trends. Thus for integer values of the powerl there is no
scaling and the effective exponental is not defined if a
DFA-l method of orderl .l is used~Fig. 11!. However, it is
4-10
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of interest to examine the asymptotic behavior of the sca
of FP(n) when the value of the powerl is close to an inte-
ger. In particular, we consider how the scaling ofFP(n) ob-
tained from the DFA-2 method changes whenl→1 @Fig.
11~c!#. Surprisingly, we find that even though the values
FP(n) are very small at large scales, there is a scaling
FP(n) with a smooth convergence of the effective expon
al→2.5 whenl→1, according to the dependenceal'l
11.5 established for region II@Fig. 11~b!#. At smaller scales
there is a flat region which is due to the fact that the fluct
tion functionY( i ) @Eq. ~3!# is smaller than the precision o
the numerical simulation.

B. Dependence ofF P„n… on the order l of DFA

Another factor that affects the rms fluctuation function
the power-law trendFP(n) is the orderl of the DFA method
used. We first take into account the following.

~1! For integer values of the powerl, the power-law trend
u( i )5APi

l is a polynomial trend which can be perfect
filtered out by the DFA method of orderl .l, and as dis-
cussed in Secs. III B and V A@see Figs. 11~b! and 11~c!#,
there is no scaling forFP(n). Therefore, in this section we
consider only noninteger values ofl.

~2! For a given value of the powerl, the effective expo-
nental can take different values depending on the orderl of
the DFA method we use~see Fig. 11!—e.g., for fixedl. l
20.5,al' l 11. Therefore, in this section we consider on
the case whenl, l 20.5 ~regions II and III!.

Since higher-order DFA-l provides a better fit for the
data, the fluctuation functionY( i ) @Eq. ~3!# decreases with
increasing orderl . This leads to a vertical shift to smalle
values of the rms fluctuation functionF(n) @Eq. ~4!#. Such a
vertical shift is observed for the rms fluctuation functio
Fh(n) for correlated noise~see Appendix A!, as well as for
the rms fluctuation function of power-law trendFP(n). Here
we ask how this vertical shift inFh(n) andFP(n) depends
on the orderl of the DFA method, and if this shift has dif
ferent properties forFh(n) compared toFP(n). This infor-
mation can help identify power-law trends in noisy data, a
can be used to differentiate crossovers separating scalin
gions with different types of correlations and crossovers t
are due to effects of power-law trends.

We consider correlated noise with a superposed pow
law trend, where the crossover inFhP(n) at large scalesn
results from the dominant effect of the power-law trend
FhP(n)'FP(n) @Eq. ~18! and Fig. 10~a!#. We choose the
power l,0.5, a range where for all ordersl of the DFA
method the effective exponental of FP(n) remains the
same, i.e.,al5l11.5 @region II in Fig. 11~b!#. For a super-
position of an anticorrelated noise and power-law trend w
l50.4, we observe a crossover in the scaling behavio
FhP(n), from a scaling region characterized by the corre
tion exponenta50.1 of the noise, whereFhP(n)'Fh (n),
to a region characterized by an effective exponental51.9,
whereFhP(n)'FP(n), for all ordersl 51,2,3 of the DFA-l
method @Fig. 12~a!#. We also find that the crossover o
FhP(n) shifts to larger scales when the orderl of DFA-l
increases, and that there is a vertical shift ofFhP(n) to lower
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values. This vertical shift inFhP(n) at large scales, where
FhP(n)5FP(n), appears to be different in magnitude whe
different orderl of the DFA-l method is used@Fig. 12~a!#.
We also observe a less pronounced vertical shift at sm
scales whereFhP(n)'Fh(n).

Next, we ask how these vertical shifts depend on the or
l of DFA-l . We define the vertical shiftD as they intercept
of FP(n): D[FP(n51). We find that the vertical shiftD in
FP(n) for the power-law trend follows a power law:D
; l t(l). We tested this relation for orders up tol 510, and we
find that it holds for different values of the powerl of the
power-law trend@Fig. 12~b!#. Using Eq.~19! we can write
FP(n)/FP(n51)5nal, i.e., FP(n);FP(n51). SinceFP(n
51)[D; l t(l) @Fig. 12~b!#, we find that

FP~n!; l t(l). ~20!

We also find that the exponentt is negative and is a decrea
ing function of the powerl @Fig. 12~c!#. Because the effec
tive exponental which characterizesFP(n) depends on the
powerl @see Fig. 11~b!#, we can express the exponentt as a
function ofal as we show in Fig. 12~d!. This representation
can help us compare the behavior of the vertical shiftD in
FP(n) with the shift in Fh(n). For correlated noise with a
different correlation exponenta, we observe a similar
power-law relation between the vertical shift inFh(n) and
the orderl of DFA-l : D; l t(a), wheret is also a negative
exponent that decreases witha. In Fig. 12~d! we compare
t(al) for FP(n) with t(a) for Fh(n), and find that for any
al5a, t(al),t(a). This difference between the vertica
shift for correlated noise and for a power-law trend can
utilized to recognize effects of power-law trends on the sc
ing properties of data.

C. Dependence ofF P„n… on the signal lengthNmax

Here we study how the rms fluctuation functionFP(n)
depends on the lengthNmax of the power-law signalu( i )
5APi

l ( i 51, . . . ,Nmax). We find that there is a vertical shif
in FP(n) with increasingNmax @Fig. 13~a!#. We observe that
when doubling the lengthNmax of the signal the vertical shift
in FP(n), which we define asFP

2Nmax/FP
Nmax, remains the

same, independent of the value ofNmax. This suggests a
power-law dependence ofFP(n) on the length of the signal

FP~n!;~Nmax!
g, ~21!

whereg is an effective scaling exponent.
Next, we ask if the vertical shift depends on the powerl

of the power-law trend. When doubling the lengthNmax of
the signal, we find that forl, l 20.5, wherel is the order of
the DFA method, the vertical shift is a constant independ
of l @Fig. 13~b!#. Since the value of the vertical shift whe
doubling the lengthNmax is 2g @from Eq.~21!#, the results in
Fig. 13~b! show thatg is independent ofl whenl, l 20.5,
and that2 log2g'20.15, i.e. The effective exponentg'
20.5.
4-11
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FIG. 12. Effect of higher-order DFA-l on the rms fluctuation functionFhP(n) for correlated noise with a superposed power-law tre
~a! FhP(n) for anticorrelated noise with the correlation exponenta50.1 and a power-lawu( i )5APi

l, whereAP525/(Nmax)
0.4, Nmax

5217, andl50.4. Results for different orderl 51,2,3 of the DFA method show~i! a clear crossover from a region at small scales where
noise dominatesFhP(n)'Fh (n) to a region at larger scales where the power-law trend dominatesFhP(n)'FP(n), and~ii ! a vertical shift
D in FhP with increasingl . ~b! Dependence of the vertical shiftD in the rms fluctuation functionFP(n) for a power-law trend on the orde
l of DFA-l for different values ofl: D; l t(l). We define the vertical shiftD as they intercept ofFP(n): D[FP(n51). Note, that we
consider only noninteger values forl and that we consider the regionl, l 20.5. Thus, for all values ofl the minimal orderl that can be
used in the DFA method isl .l10.5, e.g., forl51.6 the minimal order of the DFA that can be used isl 53 @for details see Fig. 11~b!#.
~c! Dependence oft on the powerl @error bars indicate the regression error for the fits ofD( l ) in ~b!#. ~d! Comparison oft(al) for FP(n)
and t(a) for Fh(n). Faster decay oft(al) indicates larger vertical shifts forFP(n) compared toFh(n) with increasing orderl of the
DFA-l .
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For l. l 20.5, when doubling the lengthNmax of the sig-
nal, we find that the vertical shift 2g exhibits the following
dependence onl: 2 log102

g5 log102
l2 l , and thus the effec-

tive exponentg depends onl — g5l2 l . For positive in-
teger values ofl (l5 l ), we find thatg50, and there is no
shift in FP(n), suggesting thatFP(n) does not depend on th
lengthNmax of the signal, when DFA of orderl is used~Fig.
13!. Finally, we note that depending on the effective exp
nentg, i.e., on the orderl of the DFA method and the valu
of the powerl, the vertical shift in the rms fluctuation func
tion FP(n) for the power-law trend can be positive (l. l ),
negative (l, l ), or zero (l5 l ).
01111
-

D. Combined effect onF P„n… of l, l , and Nmax

We have seen that by taking into account the effects
the powerl @Eq. ~19!#, the orderl of DFA-l @Eq. ~20!#, and
the effect of the length of the signalNmax @Eq. ~21!#, we
reach the following expression for the rms fluctuation fun
tion FP(n) for a power-law trendu( i )5APi

l:

FP~n!;APn
all t(l)~Nmax!

g(l). ~22!

For correlated noise, the rms fluctuation functionFh(n) de-
4-12
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FIG. 13. Dependence of the rms fluctuation functionFP(n) for a power-law trendu( i )5APi
l, wherei 51, . . . ,Nmax, on the length of the

trendNmax. ~a! A vertical shift is observed inFP(n) for different values ofNmax—N1max andN2max. The figure shows that the vertical shif
defined asFP

N1max(n)/FP
N2max(n), does not depend onNmax but only on the ratioN1max/N2max, suggesting thatFP(n);(Nmax)

g. ~b!
Dependence of the vertical shift on the powerl. For l, l 20.5 (l is the order of DFA!, we find a flat~constant! region characterized with
an effective exponentg520.5 and negative vertical shift. Forl. l 20.5, we find an exponential dependence of the vertical shift onl. In
this region,g5l2 l , and the vertical shift can be negative~if l, l ) or positive~if l. l ). The slope of2 log10@FP

2Nmax(n)/FP
Nmax(n)# vs l

is 2 log102 due to doubling the length of the signalNmax. This slope changes to2 log10m whenNmax is increasedm times whileg remains
independent ofNmax. For l5 l there is no vertical shift, as marked with3. Arrows indicate integer values ofl, l , for which values the
DFA-l method filters out completely the power-law trend andFP50.
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pends on the box sizen @Eq. ~6!# and on the orderl of DFA-
l @Sec. V B and Fig. 12~a!, ~d!#, and does not depend on th
length of the signalNmax. Thus we have the following ex
pression forFh(n):

Fh~n!;nal t(a). ~23!

To estimate the crossover scalen3 observed in the appar
ent scaling ofFhP(n) for a correlated noise superposed w
a power-law trend@Figs. 10~a!, 10~b!, and 12~a!#, we employ
the superposition rule@Eq. ~18!#. From Eqs.~22! and ~23!,
we obtainn3 as the intercept betweenFP(n) andFh(n),

n3;@Alt(l)2t(a)~Nmax!
g#1/(a2al). ~24!

To test the validity of this result, we consider the case
correlated noise with a linear trend. For the case of a lin
trend (l51) when DFA-1 (l 51) is applied, we haveal

52 @see Appendix C and Sec. V A, Fig. 11~b!#. Since in this
casel5 l 51. l 20.5 we haveg5l2 l 50 @see Sec.V C,
Fig. 13~b!#, and from Eq.~24! we recover Eq.~9!.

VI. CONCLUSION AND SUMMARY

In this paper we show that the DFA method perform
better than the standardR/S analysis to quantify the scalin
behavior of noisy signals for a wide range of correlatio
and we estimate the range of scales where the perform
of the DFA method is optimal. We consider different typ
of trends superposed on correlated noise, and we study
these trends affect the scaling behavior of the noise.
demonstrate that there is a competition between a trend a
noise, and that this competition can lead to crossovers in
01111
f
ar

,
ce

ow
e
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he

scaling. We investigate the features of these crossovers,
dependence on the properties of the noise, and the su
posed trend. Surprisingly, we find that crossovers which
a result of trends can exhibit power-law dependences on
parameters of the trends. We show that these crossover
nomena can be explained by the superposition of the sepa
results of the DFA method on the noise and on the tre
assuming that the noise and the trend are not correlated,
that the scaling properties of the noise and the apparent s
ing behavior of the trend are known. Our work may provi
some help to differentiate between different types of cro
overs, e.g., crossovers that separate scaling regions with
ferent correlation properties may differ from crossovers t
are an artifact of trends. The results we present here coul
useful for identifying the presence of trends and to accura
interpret correlation properties of noisy data. Related w
on trends@64# and other forms of nonstationarity@65# will be
published separately.
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APPENDIX A: NOISE

The standard signals we generate in our study are un
related, correlated, and anticorrelated noise. First we m
have a clear idea of the scaling behaviors of these stan
signals before we use them to study the effects from ot
4-13
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analysis and the DFA-1 in three regions as shown and geta1 , a2, anda3 for estimateda, which are listed in Tables IV and V. We find tha
the estimation ofa is different in the different regions.
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aspects. We generate noises by using a modified Fourie
tering method@63#. This method can efficiently genera
noiseu( i ) ( i 51,2,3, . . . ,Nmax), with the desired power-law
correlation function that asymptotically behaves
^u( j 5 i

i 1tu( j )u2&;t2a. By default, a generated noise has sta
dard deviations51. Then we can test DFA andR/S by
applying it on generated noises since we know the expe
scaling exponenta.

Before doing that, we want to briefly review the algorith
of R/S analysis. For a signalu( i ) ( i 51, . . . ,Nmax), it is di-
vided into boxes of equal sizen. In each box, thecumulative
departure Xi ~for the kth box, i 5kn11, . . . ,kn1n) is cal-
culated

Xi5 (
j 5kn11

i

@u~ j !2^u&#, ~A1!

where^u&5n21( i 5kn11
(k11)n u( i ) , and therescaled range R/S is

defined by

R/S5S21F max
kn11< i<(k11)n

Xi2 min
kn11< i<(k11)n

Xi G , ~A2!
01111
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s
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whereS5An21( j 51
n @u( j )2^u&#2 is the standard deviation

in each box. The average of rescaled range in all the boxe
equal sizen, is obtained and denoted by^R/S&. Repeat the
above computation over different box sizen to provide a
relationship between̂R/S& andn. According to Hurst’s ex-
perimental study@66#, a power-law relation between̂R/S&
and the box sizen indicates the presence of scaling:^R/S&
;na.

Figure 14 shows the results ofR/S, DFA-1, and DFA-2
on the same generated noises. Loosely speaking, we ca
that F(n) ~for DFA! and R/S ~for R/S analysis! show a
power-law relation withn as expected:F(n);na and R/S
;na. In addition, there is no significant difference betwe
the results of different order DFA except for some vertic
shift of the curves and the little bend-down for small box s
n. The bend-down for a very small box ofF(n) from higher-
order DFA is because there are more variables to fit th
few points.

Ideally, when analyzing a standard noise,F(n) ~DFA!
andR/S (R/S analysis! will be power-law functions with a
given power:a, no matter which region ofF(n) andR/S is
4-14
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chosen. However, a careful study shows that the scaling
ponenta depends on scalen. The estimateda is different for
the different regions ofF(n) andR/S as illustrated by Figs.
14~a! and 14~b! and by Tables IV and V. It is very importan
to know the best fitting region of the DFA andR/S analysis

TABLE IV. Estimation of the correlation exponenta for corre-
lated noise from theR/S analysis in three regions as shown in Fi
14~a!. a is the input value of the scaling exponent,a1 is the esti-
mation from region 1 (4,n<32), a2 from region 2 (32,n
<3162), anda3 from region 3 (3126,n<217). The same corre-
lated noise is used in Table V.

a a1 a2 a3

0.1 0.44 0.23 0.12
0.3 0.52 0.37 0.23
0.5 0.62 0.52 0.47
0.7 0.72 0.70 0.45
0.9 0.81 0.87 0.63
01111
x-in the study of real signals. Otherwise, an inaccurate va
for a will be obtained if an inappropriate region is selecte

In order to find the best region, we first determine t
dependence of the locally estimateda, a loc , on the scalen.
First, generate a standard noise with given scaling expon

TABLE V. Estimation of the correlation exponenta for corre-
lated noise from DFA-1 in the three regions as shown in Fig. 14~b!.
a is the input value of the scaling exponent,a1 is the estimation
from region 1 (4,n<32), a2 from region 2 (32,n<3162), and
a3 from region 3 (3126,n<217).

a a1 a2 a3

0.1 0.28 0.15 0.08
0.3 0.40 0.31 0.22
0.5 0.55 0.50 0.35
0.7 0.72 0.69 0.55
0.9 0.91 0.91 0.69
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FIG. 15. The estimateda from the local fit~a! R/S analysis, the length of signalNmax5214. ~b! R/S analysis,Nmax5220. ~c! DFA-1,
Nmax5214. ~d! DFA-1, Nmax5220. a loc come from the average of 50 simulations. If a technique is working, then the data for the s
exponenta should be a weakly fluctuating horizontal line centered abouta loc5a. Note that such a horizontal behavior does not hold for
the scales. Generally, such an expected behavior begins from some scalenmin , holds for a range, and ends at a larger scalenmax. For DFA-1,
nmin is quite smalla.0.5. For theR/S analysis,nmin is small only whena'0.7.
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a; then calculateF(n) ~or R/S), and obtaina loc(n) by local
fitting of F(n) ~or R/S). The same random simulation
repeated 50 times for both the DFA andR/S analyses. The
resultant averagea loc(n), respectively, is illustrated in Fig
15 for the DFA-1 and R/S analyses.

If a scaling analysis method is working properly, then t
resulta loc(n) from simulation witha would be a horizontal
line with a slight fluctuation centered abouta loc(n)5a. Note
from Fig. 15 that such ahorizontal behaviordoes not hold
for all the scalesn but for a certain range fromnmin to nmax.
In addition, at small scale, theR/S analysis givesa loc.a if
a,0.7 anda loc,a if a.0.7, which has been pointed ou
by Mandelbrot@67#, while DFA givesa loc.a if a,1.0 and
a loc,a if a.1.0.

It is clear that the smaller thenmin and the larger thenmax,
the better the method. We also perceive that the expe
horizontal behaviorstops because the fluctuations beco
larger due to the undersampling ofF(n) or R/S whenn gets
closer to the length of the signalNmax. Furthermore, it can
be seen from Fig. 15 thatnmax'

1
10 Nmax independent ofa ~if

the best-fit region exists!, which is why one-tenth of the sig
nal length can be considered as the maximum box size w
using a DFA orR/S analysis.

On the contrary,nmin does not depend on theNmax since
a loc(n) at smalln hardly changes asNmax varies but it does
depend ona. Thus, we obtainnmin quantitatively as shown
in Fig. 16. For theR/S analysis,nmin is small only when
a'0.7. Whena.0.7 anda,0.7, nmin becomes very large
and close tonmax, indicating that the best-fit region wil
vanish and theR/S analysis does not work at all.

Compared toR/S, DFA works better sincenmin is quite
small for correlated signals witha.0.5. However, for
a,0.5 nmin is still relatively large. We can improve thi

0 0.5 1 1.5
α
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10
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10
4

10
6

n m
in

R/S
DFA–1

minimum box size 

FIG. 16. The starting point of a good-fit region,nmin , for the
DFA-1 andR/S analyses. The results are obtained from 50 simu
tions, in which the length of noise isNmax5220. The condition for a
good fit isDa5ua loc2au,0.01. The data fora.1.0 shown in the
shading area are obtained by applying an analysis on the inte
tions of noises witha,1.0. It is clear that the DFA-1 works bette
than theR/S analysis because itsnmin is always smaller than that o
the R/S analysis.
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situation by first integrating the correlated noise and th
applying the DFA to the integrated signal. The resultant
ponenta8 for the integrated signal will bea085a11. We
find thatnmin for the integrated signal becomes much sma
as shown in Fig. 16~shaded areaa.1). Therefore, for cor-
related noise witha,0.5, it is best to estimate first the sca
ing exponenta8 of the integrated signal and then to obtaina
by a5a821.

APPENDIX B: SUPERPOSITION LAW FOR THE DFA

For two uncorrelated signalsf ( i ) and g( i ), their root-
mean-square~rms! fluctuation functions areF f(n) and
Fg(n), respectively. We want to prove that for the sign
f ( i )1g( i ), its rms fluctuation function

F f 1g~n!5AF f~n!21Fg~n!2. ~B1!

Consider three signals in the same box first. The in
grated signals forf, g, andf 1g areyf( i ), yg( i ), andyf 1g( i )
and their corresponding trends areyf

f it , yg
f it , and yf 1g

f it ( i
51,2, . . . ,n, n is the box size!. Since yf 1g( i )5yf( i )
1yg( i ) and combines the definition of the detrended fluctu
tion function Eq.~3!, we have that for all boxes

Yf 1g~ i !5Yf~ i !1Yg~ i !, ~B2!

whereYf 1g is the detrended fluctuation function for the si
nal f 1g, Yf( i ) is for the signalf, andYg( i ) for g. Further-
more, according to the definition of the rms fluctuation, w
can obtain

F f 1g~n!5A 1

Nmax
(
i 51

Nmax

@Yf 1g~ i !#2

5A 1

Nmax
(
i 51

Nmax

@Yf~ i !1Yg~ i !#2, ~B3!

wherel is the number of boxes andk means thekth box. If
f and g are not correlated, neither areYf( i ) and Yg( i ) and,
thus,

(
i 51

Nmax

Yf~ i !Yg~ i !50. ~B4!

From Eq.~B4! and Eq.~B3! we have

F f 1g~n!5A 1

Nmax
(
i 51

Nmax

@Yf~ i !21Yg~ i !2#

5A@F f~n!#21@Fg~n!#2. ~B5!

APPENDIX C: DFA-1 ON LINEAR TREND

Let us suppose a linear time seriesu( i )5ALi . The inte-
grated signalyL( i ) is

-

ra-
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yL~ i !5(
j 51

i

AL j 5AL

i 21 i

2
. ~C1!

Let as callNmax the size of the series andn the size of the
box. The rms fluctuationFL(n) as a function ofn andNmax
is

FL~n!

5ALA 1

Nmax
(
k51

Nmax /n

(
i 5(k21)n11

kn S i 21 i

2
2~ak1bki ! D 2

,

~C2!

whereak andbk are the parameters of a least-squares fit
the kth box of sizen. ak andbk can be determined analyt
cally, thus giving

ak512 1
12 n21 1

2 n2k1 1
12 n2 1

2 k2n2, ~C3!

bk512 1
2 n1kn1 1

2 . ~C4!

With these values,FL(n) can be evaluated analytically,

FL~n!5AL
1

60A~5n4125n3125n2225n230! ~C5!
n-

.

n,

01111
f

The dominating term inside the square root is 5n4 and then
one obtains

FL~n!'
A5

60
ALn2, ~C6!

leading directly to an exponent of 2 in the DFA. An impo
tant consequence is that asF(n) does not depend onNmax,
for linear trends with the same slope, the DFA must g
exactly the same results for series of different sizes. Thi
not true for other trends, where the exponent is 2, but
factor multiplyingn2 can depend onNmax.

APPENDIX D: DFA-1 ON A QUADRATIC TREND

Let us suppose now a series of the typeu( i )5AQi 2. The
integrated time seriesy( i ) is

y~ i !5AQ(
j 51

i

j 25AQ

2i 313i 21 i

6
. ~D1!

As before, let us callNmax andn the sizes of the series an
box, respectively. The rms fluctuation functionFQ(n) mea-
suring the rms fluctuation is now defined as
FQ~n!5AQA 1

Nmax
(
k51

Nmax /n

(
i 5(k21)n11

kn S 2i 313i 21 i

6
2~ak1bki ! D 2

, ~D2!

whereak andbk are the parameters of a least-squares fit of thekth box of sizen. As before,ak andbk can be determined
analytically, thus giving

ak5 1
15 n31n3k22 7

15 n3k1 17
30 n2k2 7

60 n21 1
20 n2 2

3 k3n32 1
2 n2k21 1

15 kn, ~D3!

bk5 3
10 n21n2k22n2k1kn2 2

5 n1 1
10 . ~D4!

Onceak andbk are known,F(n) can be evaluated, giving

FQ~n!5AQ

1

1260
A221~n415n315n225n26!~32n226n2812210Nmax2140Nmax

2 !. ~D5!

As Nmax.n, the dominant term inside the square root is given by 140Nmax
2 321n45AQ2940n4Nmax

2 , and then one has
approximately

FQ~n!'AQ
1

1260A2940n4Nmax
2 5AQ

1
90A15Nmaxn

2 ~D6!

leading directly to an exponent 2 in the DFA analysis. An interesting consequence derived from Eq.~D6! is that FQ(n)
depends on the length of the signalNmax, and the DFA line@ logFQ(n) vs logn# for the quadratic seriesu( i )5AQi 2 of different
Nmax does not overlap~as is the case for linear trends!.
ey,

.

@1# C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Sta
ley, and A. L. Goldberger, Phys. Rev. E49, 1685~1994!.

@2# S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng, H. E
Stanley, and M. Simons, Biophys. J.65, 2673~1993!.

@3# S. M. Ossadnik, S. B. Buldyrev, A. L. Goldberger, S. Havli
R. N. Mantegna, C.-K. Peng, M. Simons, and H. E. Stanl
Biophys. J.67, 64 ~1994!.

@4# M. S. Taqqu, V. Teverovsky, and W. Willinger, Fractals3, 785
~1995!.

@5# N. Iyengar, C.-K. Peng, R. Morin, A. L. Goldberger, and L. A
4-17



S

.

S

-
o

J.
d-

J.
an

h.

.

r-

.
H

er

d-
ol

A

h.

-

te

ry

L.

.

.
D

n,

.

a,

n,

,
A

l-

.l.

A

y,

g,

.

A

es.

ys.

e,

E.

.

-
ch-

Y.

nd

HU, IVANOV, CHEN, CARPENA, AND STANLEY PHYSICAL REVIEW E64 011114
Lipsitz, Am. J. Physiol.40, R1078~1996!.
@6# P. Ch. Ivanov, M. G. Rosenblum, C.-K. Peng, J. E. Mietus,

Havlin, H. E. Stanley, and A. L. Goldberger, Nature~London!
383, 323 ~1996!.

@7# K. K. L. Ho, G. B. Moody, C.-K. Peng, J. E. Mietus, M. G
Larson, D. Levy, and A. L. Goldberger, Circulation96, 842
~1997!.

@8# P. Ch. Ivanov, M. G. Rosenblum, C.-K. Peng, J. E. Mietus,
Havlin, H. E. Stanley, and A. L. Goldberger, Physica A249,
587 ~1998!.

@9# M. Barbi, S. Chillemi, A. Di Garbo, R. Balocchi, C. Carpeg
giani, M. Emdin, C. Michelassi, and E. Santarcangelo, Cha
Solitons Fractals9, 507 ~1998!.

@10# P. Ch. Ivanov, A. Bunde, L. A. Nunes Amaral, S. Havlin,
Fritsch-Yelle, R. M. Baevsky, H. E. Stanley, and A. L. Gol
berger, Europhys. Lett.48, 594 ~1999!.

@11# S. M. Pikkujamsa, T. H. Makikallio, L. B. Sourander, I.
Raiha, P. Puukka, J. Skytta, C.-K. Peng, A. L. Goldberger,
H. V. Huikuri, Circulation100, 393 ~1999!.

@12# S. Havlin, S. V. Buldyrev, A. Bunde, A. L. Goldberger, P. C
Ivanov, C.-K. Peng, and H. E. Stanley, Physica A273, 46
~1999!.

@13# H. E. Stanley, L. Amaral, A. L. Goldberger, S. Havlin, P. C
Ivanov, and C.-K. Peng, Physica A270, 309 ~1999!.

@14# Y. Ashkenazy, M. Lewkowicz, J. Levitan, S. Havlin, K. Sae
mark, H. Moelgaard, and P. E. B. Thomsen, Fractals7, 85
~1999!.

@15# T. H. Makikallio, J. Koistinen, L. Jordaens, M. P. Tulppo, N
Wood, B. Golosarsky, C.-K. Peng, A. L. Goldberger, and
V. Huikuri, Am. J. Cardiol.83, 880 ~1999!.

@16# C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberg
Chaos5, 82 ~1995!.

@17# S. Havlin, S. V. Buldyrev, A. L. Goldberger, S. M. Ossa
niksm, C.-K. Peng, M. Simons, and H. E. Stanley, Chaos, S
tons Fractals6, 171 ~1995!.

@18# P. A. Absil, R. Sepulchre, A. Bilge, and P. Gerard, Physica
272, 235 ~1999!.

@19# S. Havlin, L. A. Nunes Amaral, A. L. Goldberger, P. C
Ivanov, C.-K. Peng, and H. E. Stanley, Physica A274, 99
~1999!.

@20# D. Toweill, K. Sonnenthal, B. Kimberly, S. Lai, and B. Gold
stein, Crit. Care Med.28, 2051~2000!.

@21# A. Bunde, S. Havlin, J. W. Kantelhardt, T. Penzel, J. H. Pe
and K. Voigt, Phys. Rev. Lett.85, 3736~2000!.

@22# T. T. Laitio, H. V. Huikuri, E. S. H. Kentala, T. H. Makikallio,
J. R. Jalonen, H. Helenius, K. Sariola-Heinonen, S. Yli-May
and H. Scheinin, Anesthesiology93, 69 ~2000!.

@23# Y. Ashkenazy, P. Ch. Ivanov, S. Havlin, C.-K. Peng, A.
Goldberger, and H. E. Stanley, Phys. Rev. Lett.86, 1900
~2001!.

@24# C.-K. Peng, S. V. Buldyrev, A. L. Goldberger, S. Havlin, M
Simons, and H. E. Stanley, Phys. Rev. E47, 3730~1993!.

@25# H. E. Stanley, S. V. Buldyrev, A. L. Goldberger, S. Havlin, R
N. Mantegna, C.-K. Peng, and M. Simons, Nuovo Cimento
16, 1339~1994!.

@26# R. N. Mantegna, S. V. Buldyrev, A. L. Goldberger, S. Havli
C.-K. Peng, M. Simons, and H. E. Stanley, Phys. Rev. Lett.73,
3169 ~1994!.

@27# C.-K. Peng, S. V. Buldyrev, A. L. Goldberger, S. Havlin, R. N
01111
.

.

s,

d

.

,

i-

r,

,

Mantegna, M. Simons, and H. E. Stanley, Physica A221, 180
~1995!.

@28# S. Havlin, S. V. Buldyrev, A. L. Goldberger, R. N. Mantegn
C.-K. Peng, M. Simons, and H. E. Stanley, Fractals3, 269
~1995!.

@29# R. N. Mantegna, S. V. Buldyrev, A. L. Goldberger, S. Havli
C.-K. Peng, M. Simons, and H. E. Stanley, Phys. Rev. Lett.76,
1979 ~1996!.

@30# S. V. Buldyrev, N. V. Dokholyan, A. L. Goldberger, S. Havlin
C.-K. Peng, H. E. Stanley, and G. M. Viswanathan, Physica
249, 430 ~1998!.

@31# S. Blesic, S. Milosevic, D. Stratimirovic, and M. Ljubisav
jevic, Physica A268, 275 ~1999!.

@32# H. Yoshinaga, S. Miyazima, and S. Mitake, Physica A280,
582 ~2000!.

@33# C. A. Perazzo, E. A. Fernandez, D. R. Chialvo, and P
Willshaw, Fractals8, 279 ~2000!.

@34# Z. Siwy, S. Mercik, K. Ivanova, and M. Ausloos, Physica
~to be published!.

@35# Y. Liu, P. Cizeau, M. Meyer, C.-K. Peng, and H. E. Stanle
Physica A245, 437 ~1997!.

@36# N. Vandewalle and M. Ausloos, Physica A246, 454 ~1997!.
@37# N. Vandewalle and M. Ausloos, Phys. Rev. E58, 6832~1998!.
@38# Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Pen

and H. E. Stanley, Phys. Rev. E60, 1390~1999!.
@39# I. M. Janosi, B. Janecsko, and I. Kondor, Physica A269, 111

~1999!.
@40# M. Ausloos, N. Vandewalle, P. Boveroux, A. Minguet, and K

Ivanova, Physica A274, 229 ~1999!.
@41# M. Roberto, E. Scalas, G. Cuniberti, and M. Riani, Physica

269, 148 ~1999!.
@42# N. Vandewalle, M. Ausloos, and P. Boveroux, Physica A269,

170 ~1999!.
@43# P. Grau-Carles, Physica A287, 396 ~2000!.
@44# M. Ausloos, Physica A285, 48 ~2000!.
@45# M. Ausloos and K. Ivanova, Physica A286, 353 ~2000!.
@46# M. Ausloos and K. Ivanova, Phys. Rev. E63, 047201~2001!.
@47# M. Ausloos and K. Ivanova, Int. J. Mod. Phys. C~to be pub-

lished!.
@48# K. Ivanova and M. Ausloos, Physica A274, 349 ~1999!.
@49# A. Montanari, R. Rosso, and M. S. Taqqu, Water Resour. R

36, ~5!, 1249~2000!.
@50# C. Matsoukas, S. Islam, and I. Rodriguez-Iturbe, J. Geoph

Res.,@Atmos.# 105, 29 165~2000!.
@51# J. W. Kantelhardt, R. Berkovits, S. Havlin, and A. Bund

Physica A266, 461 ~1999!.
@52# C. L. Alados and M. A. Huffman, Ethology106, 105 ~2000!.
@53# C.-K. Peng, J. E. Mietus, J. M. Hausdorff, S. Havlin, H.

Stanley, and A. L. Goldberger, Phys. Rev. Lett.70, 1343
~1993!.

@54# N. Makarenko, L. M. Karimova, B. I. Demchenko, and M. M
Novak, Fractals6, 359 ~1998!.

@55# G. M. Viswanathan, S. V. Buldyrev, E. K. Garger, V. A. Kash
pur, L. S. Lucena, A. Shlyakhter, H. E. Stanley, and J. Ts
iersch, Phys. Rev. E62, 4389~2000!.

@56# E. Koscielny-Bunde, A. Bunde, S. Havlin, H. E. Roman,
Goldreich, and H. J. Schellnhuber, Phys. Rev. Lett.81, 729
~1998!.

@57# E. Koscielny-Bunde, H. E. Roman, A. Bunde, S. Havlin, a
4-18



n

ys

S.

es.

EFFECT OF TRENDS ON DETRENDED FLUCTUATION . . . PHYSICAL REVIEW E64 011114
H. J. Schellnhuber, Philos. Mag. B77, 1331~1998!.
@58# K. Ivanova, M. Ausloos, E. E. Clothiaux, and T. P. Ackerma

Europhys. Lett.52, 40 ~2000!.
@59# P. Talkner and R. O. Weber, Phys. Rev. E62, 150 ~2000!.
@60# Y. Ogata and K. Abe, Issues Sci. Technol.59, 139 ~1991!.
@61# M. F. Shlesinger and G. H. Weiss,The Wonderful World of

Stochastics: A Tribute to Elliott W. Montroll~North-Holland,
New York, 1985!.

@62# D. Stauffer and H. E. Stanley,From Newton to Mandelbrot,
2nd ed.~Springer-Verlag, Berlin, 1996!.

@63# H. A. Makse, S. Havlin, M. Schwartz, and H. E. Stanley, Ph
01111
,

.

Rev. E53, 5445~1996!.
@64# J. W. Kantelhardt, E. Koscielny-Bunde, H. H. A. Rego,

Havlin, and A. Bunde, Physica A294, 441 ~2001!.
@65# Z. Chen, P. Ch. Ivanov, K. Hu, and H. E. Stanley~unpub-

lished!.
@66# H. E. Hurst, Trans. Am. Soc. Civ. Eng.116, 770 ~1951!.
@67# B. B. Mandelbrot and James R. Wallis, Water Resources R

5, No. 2, 321~1969!.
@68# P. Bernaola Galva´n, R. Roma´n Roldán, and J. L. Oliver, Phys.

Rev. E53, 5181~1996!.
4-19


